Integration: Llama.cpp

Use Llama.cpp models with Haystack.

Authors
Ashwin Mathur

Table of Contents

Introduction

Llama.cpp is a library written in C/C++ for efficient inference of Large Language models. It uses the efficient quantized GGUF format, dramatically reducing memory requirements and accelerating inference. This means it is possible to run LLMs efficiently on standard machines (even without GPUs).

Installation

Install the llama-cpp-haystack package:

pip install llama-cpp-haystack

Using a different compute backend

The default installation behaviour is to build llama.cpp for CPU on Linux and Windows and use Metal on MacOS. To use other compute backends:

  1. Follow instructions on the llama.cpp installation page to install llama-cpp-python for your preferred compute backend.
  2. Install llama-cpp-haystack using the command above.

For example, to use llama-cpp-haystack with the cuBLAS backend, you have to run the following commands:

export LLAMA_CUBLAS=1
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
pip install llama-cpp-haystack

Downloading Models

Llama.cpp requires the quantized binary of the LLM in GGUF format.

The GGUF versions of popular LLMs can be downloaded from HuggingFace.

For example, to download the GGUF version of OpenChat3.5, we find the required GGUF version on HuggingFace and then download the file to disk:

import os
import urllib.request

def download_file(file_link, filename):
    # Checks if the file already exists before downloading
    if not os.path.isfile(filename):
        urllib.request.urlretrieve(file_link, filename)
        print("Model file downloaded successfully.")
    else:
        print("Model file already exists.")

# Download GGUF model from HuggingFace
ggml_model_path = (
    "https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/resolve/main/openchat-3.5-1210.Q3_K_S.gguf"
)
filename = "openchat-3.5-1210.Q3_K_S.gguf"
download_file(ggml_model_path, filename)

You could also directly download the file from the command line using Curl:

curl -L -O "https://huggingface.co/TheBloke/openchat-3.5-1210-GGUF/resolve/main/openchat-3.5-1210.Q3_K_S.gguf"

Usage

You can leverage Llama.cpp to run models by using the LlamaCppGenerator component.

Initialize an LlamaCppGenerator with the the path to the GGUF file and also specify the required model and text generation parameters:

from haystack_integrations.components.generators.llama_cpp import LlamaCppGenerator

generator = LlamaCppGenerator(
    model="/content/openchat-3.5-1210.Q3_K_S.gguf",
    n_ctx=512,
    n_batch=128,
    model_kwargs={"n_gpu_layers": -1},
		generation_kwargs={"max_tokens": 128, "temperature": 0.1},
)
generator.warm_up()
prompt = f"Who is the best American actor?"
result = generator.run(prompt)

Passing additional model parameters

The model_path, n_ctx, n_batch arguments have been exposed for convenience and can be directly passed to the Generator during initialization as keyword arguments.

The model_kwargs parameter can be used to pass additional arguments when initializing the model. In case of duplication, these parameters override the model_path, n_ctx, and n_batch initialization parameters.

See Llama.cpp’s LLM documentation for more information on the available model arguments.

For example, to offload the model to GPU during initialization:

from haystack_integrations.components.generators.llama_cpp import LlamaCppGenerator

generator = LlamaCppGenerator(
    model="/content/openchat-3.5-1210.Q3_K_S.gguf",
    n_ctx=512,
    n_batch=128,
    model_kwargs={"n_gpu_layers": -1}
)
generator.warm_up()
prompt = f"Who is the best American actor?"
result = generator.run(prompt, generation_kwargs={"max_tokens": 128})
generated_text = result["replies"][0]
print(generated_text)

Passing text generation parameters

The generation_kwargs parameter can be used to pass additional generation arguments like max_tokens, temperature, top_k, top_p, etc to the model during inference.

See Llama.cpp’s Completion API documentation for more information on the available generation arguments.

For example, to set the max_tokens and temperature:

from haystack_integrations.components.generators.llama_cpp import LlamaCppGenerator

generator = LlamaCppGenerator(
    model="/content/openchat-3.5-1210.Q3_K_S.gguf",
    n_ctx=512,
    n_batch=128,
    generation_kwargs={"max_tokens": 128, "temperature": 0.1},
)
generator.warm_up()
prompt = f"Who is the best American actor?"
result = generator.run(prompt)

The generation_kwargs can also be passed to the run method of the generator directly:

from haystack_integrations.components.generators.llama_cpp import LlamaCppGenerator

generator = LlamaCppGenerator(
    model="/content/openchat-3.5-1210.Q3_K_S.gguf",
    n_ctx=512,
    n_batch=128,
)
generator.warm_up()
prompt = f"Who is the best American actor?"
result = generator.run(
    prompt,
    generation_kwargs={"max_tokens": 128, "temperature": 0.1},
)

Example: RAG Pipeline

We use the LlamaCppGenerator in a Retrieval Augmented Generation pipeline on the Simple Wikipedia Dataset from HuggingFace and generate answers using the OpenChat-3.5 LLM.

Load the dataset:

# Install HuggingFace Datasets using "pip install datasets"
from datasets import load_dataset
from haystack import Document, Pipeline
from haystack.components.builders.answer_builder import AnswerBuilder
from haystack.components.builders.prompt_builder import PromptBuilder
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
from haystack.components.retrievers import InMemoryEmbeddingRetriever
from haystack.components.writers import DocumentWriter
from haystack.document_stores.in_memory import InMemoryDocumentStore

# Import LlamaCppGenerator
from haystack_integrations.components.generators.llama_cpp import LlamaCppGenerator

# Load first 100 rows of the Simple Wikipedia Dataset from HuggingFace
dataset = load_dataset("pszemraj/simple_wikipedia", split="validation[:100]")

docs = [
    Document(
        content=doc["text"],
        meta={
            "title": doc["title"],
            "url": doc["url"],
        },
    )
    for doc in dataset
]

Index the documents to the InMemoryDocumentStore using the SentenceTransformersDocumentEmbedder and DocumentWriter:

doc_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
doc_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")

# Indexing Pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=doc_embedder, name="DocEmbedder")
indexing_pipeline.add_component(instance=DocumentWriter(document_store=doc_store), name="DocWriter")
indexing_pipeline.connect("DocEmbedder", "DocWriter")

indexing_pipeline.run({"DocEmbedder": {"documents": docs}})

Create the Retrieval Augmented Generation (RAG) pipeline and add the LlamaCppGenerator to it:

# Prompt Template for the https://huggingface.co/openchat/openchat-3.5-1210 LLM
prompt_template = """GPT4 Correct User: Answer the question using the provided context.
Question: {{question}}
Context:
{% for doc in documents %}
    {{ doc.content }}
{% endfor %}
<|end_of_turn|>
GPT4 Correct Assistant:
"""

rag_pipeline = Pipeline()

text_embedder = SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")

# Load the LLM using LlamaCppGenerator
model_path = "openchat-3.5-1210.Q3_K_S.gguf"
generator = LlamaCppGenerator(model=model_path, n_ctx=4096, n_batch=128)

rag_pipeline.add_component(
    instance=text_embedder,
    name="text_embedder",
)
rag_pipeline.add_component(instance=InMemoryEmbeddingRetriever(document_store=doc_store, top_k=3), name="retriever")
rag_pipeline.add_component(instance=PromptBuilder(template=prompt_template), name="prompt_builder")
rag_pipeline.add_component(instance=generator, name="llm")
rag_pipeline.add_component(instance=AnswerBuilder(), name="answer_builder")

rag_pipeline.connect("text_embedder", "retriever")
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")
rag_pipeline.connect("llm.replies", "answer_builder.replies")
rag_pipeline.connect("retriever", "answer_builder.documents")

Run the pipeline:

question = "Which year did the Joker movie release?"
result = rag_pipeline.run(
    {
        "text_embedder": {"text": question},
        "prompt_builder": {"question": question},
        "llm": {"generation_kwargs": {"max_tokens": 128, "temperature": 0.1}},
        "answer_builder": {"query": question},
    }
)

generated_answer = result["answer_builder"]["answers"][0]
print(generated_answer.data)
# The Joker movie was released on October 4, 2019.